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FINITE ELEMENT MODELING FOR
CONVECTION-DIFFUSION PROBLEMS

INTRODUCTION

The simulation of thermally induced waves requires the solution of the convection-
diffusion equation. Analytical and numerical solutions of this equation have attracted consider-

able attention in a variety of engineering fields due to its wide applicability.

The theory for convective or diffusive dominated flows has been well-established and a
variety of classical approaches exist in the literature for the solution of problems in this area.
One such solution is given by Price, Cavendish and Varga {1]. Analytical solutions are valid
primarily for linear equations and their application to problems of practical interest presents
difficulties due to the limitations of such solutions. It is because of the restrictive nature of the
analytical solutions that research efforts have been focused on approximate or numerical solu-
tions of the convection-diffusion equation. A review and comparison of available numerical
methods can be found in Lee et al (1976), Ehlig (1977), and Genuchten (1977). Numerical
methods discussed in these papers include finite differences and some finite element approxima-
tions {5]. Most of the numerical schemes produce results of acceptable accuracy either for con-
vection dominated flows, or for diffusion dominated flows, but they lack uniformity in perfor-
mance. Finite difference schemes are the least attractive ones due to their instability, large
oscillations, and, for some of them inherent artificial diffusion. On the other hand finite ele-
ment schemes have produced more reliable numerical solutions but their application is limited

to certain types of dispersion while performing poorly for other types. Another disadvantage of

Manuscript submitted March 14, 1980.
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existing finite element solutions is that they are based on formulations restricted by the condi-

tions of a particular problem and they are limited in applications to other types of problems.

In view of the limitations and lack of uniformity of existing approaches, it is desirable to
develop a unified formulation which is capable of treating not only pure convection-through-
dispersion to pure diffusion problems, but also other types of problems governed by similar
equations. In order to achieve this, a unified variational formulation is introduced for the
convection-diffusion equation; this equation is written in terms of a generalized quantity,
defined as heat displacement [6,7], which is similar 10 a mechanical displacement and has units
of length. As of this definition, changes in temperature are treated as thermal deformations

which are similar to mechanical strains.

In the first part of this study, the basic definitions are introduced and the convection-
diffusion equation is expressed in terms of the heat displacement. A variational formulation is
then derived, based on the principle of virtual work in mechanics, and by using generalized
coordinates the variational equation is written in a form equivalent to that of the Lagrangian
equation in mechanics. Since the derived equation is expressed in terms of generalized coordi-
naltes, it is applicable to a wide variety of physical problems and can be solved by any numerical

method.

The variational form of the derived equation is most suitable for applying the finite ele-
ment method for its numerical solution. This is done in the second part of this study, where
the basic finite element method is used to derive two finite element models for solving initial or
boundary value problems. The first model is based on a linear approximation of the displace-
ment and the second on a third order approximation. The matrix equation for the linear model
1 expressed in terms of nodal displacements and for the higher order model, in terms of nodal

displacements and nodal temperatures.
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Each element model can be used for: a) pure convection, b) pure diffusion, and ¢) mixed
convection-diffusion problems with the appropriate boundary conditions. Also, dynamic or

quasi-static solutions can be obtained respectively by retaining or neglecting the inertia term.

Numerical results are given in the third part of this study where a third-order, backward
finite difference scheme is employed for the solution of the system of differential equations
(8,9]. For the combined finite element-finite difference scheme the stability, convergence, and
accuracy are investigated and some uniform convergence criteria are discussed. Numerical
results are also given for a number of convection through diffusion cases and for three types of
boundary conditions. The present results are compared to existing analyical solutions and the

accuracies of the two finite element models are discussed.

1. BASIC EQUATIONS
Consider an incompressible medium in a flow field subjected to external heating. Intially
the medium is at a uniform temperature T,, which will be referred to as the reference tempera-

ture, and the state at this temperature will be referred 1o as the reference state.

The instantaneous absolute temperature is denoted by T, and the difference T— T, defines
the instantaneous relative temperature A@, which is a function of the space coordinates and
time. Let

T-T, A®
T T )

be defined as the temperature change per unit temperatue T,, or the instantaneous relative

0=
temperature per unit temperature. In the following it will be referred to as the temperature ¢
or the dimensionless temperature.

Assuming cartesian coordinates (x,, /= 1,2,3), the temperature field @ satisfies the

convection-diffusion equation
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90 (x,.,1) 9 kB 90 (x,.1)
ry +6x, (V, 0 (x,,t) 3x k”—_ax, 2)

where V is the velocity vector and &, ; the thermal diffusivity (k,; = k).

We now define a vector field H; (x;,1) as the heat displacement vector such that

0= 9H, (x;,1)
dx,

The summation convention is assumed for repeated indices throughout this study.

= ”,’_, (Xj,f) (3)

In the above definition, Eq. (3), @ represents a thermal strain analogous to mechanical
strain. Note that H,(x;,1) has the dimension of displacement, which makes it analogous to a
mechanical displacement. Thus there is a one-to-one correspondence between heat

displacement-mechanical displacement and temperature strain.

Using the definition from Eq. (3), we now write Eq. (2) as follows

dH, 89
7 + Ve — k; axj 0 4)
or
OH, oH, 1 dc
L — Y, —t - 27 _
SO TR AL Ty S v )
where the thermal stress o is defined by
o=cT,0 6)

with ¢ the heat capacity per unit volume, and A;; = (k).

In the above analysis the thermal flow field is governed by the three Egs. (3), (5) and (6)
which, together with the appropriate boundary conditions, provide a complete formulation for
convective heat transfer. They are analogous to the kinematic relations, stress-strain relations

and momentum equations in mechanics.

The advantage of introducing the heat displacement vector are more apparent when the
concept of virtual work is used to derive the variational formulation. Furthermore, the above

4
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analysis is more suitable for applying the finite element method which is based on displacement

approximations.

2. VARIATIONAL FORMULATION

Following the usual procedures of the principle of virtual work in mechanics, we consider
that the medium is subjected to an arbitrary infinitesimal virtual displacement § H, from the
equilibrium configuration. The corresponding variations 80 are given by Eq. (3). Muitiplica-

tion of Eq. (4) by 8 H, and integation over a volume » of the medium yields

.I-r p ,0 kU ) Sl‘l,dv 0

Integrating by parts and applying the divergence theorem, one obtains

aH, 9
[ 5 sHav+ [ vestav + [ kg x GHI = S k,06Hm,ds

where n, is the unit normal vector pointing outward at the boundary surface S. From Eq. (3)

one derives

d

Iz By GH)D - f5,k,080dv = kSE )

where 8,; is the Kronecker’s delta and the scalar E is defined as

1
E=5fv02dv (8)

and plays the role of a potential function. Equation (6) is now written as follows

dH,
sE+ [ a, 5. SHav + S nyviosHdv = S, 08 Hn,as. 9)
Eq. (9) may be considered as a variational principle in a broad sense and a more compact form
of this equation can be derived by introducing generalized coordinates defined as

’{,'(Xj,f) - ’li(q,,,XJ,f) (10)
where the generalized coordinates ¢, are functions of time. The advantage of using generalized

coordinated is that H; may be expressed in different functional forms. Care should be taken

when the time derivative of H; is considered, and it should be expressed as

5

%
v , C T SRR T
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. 0H oH,
, i . an
H = 6q, %+ ar

In terms of arbitary variations of the generalized coordinates, the corresponding displace-

ment field variations are

8H = —" 8q (12)

and the variation of the potential E becomes

9F
SE=-—""-58 (13
aqj' 9
In view of Egs. (12) and (13), Eq. (9) may be written for each arbitrary variation 8.5, as follows
£Ya dH, dH, aH, aH
il RV ol el fx,,, s ds. (14)
From Eq. (11) one derives
9H, _ aH,
Bék aqk

and the second term in Eq. (14) is then expressed

OH, 9H, OH, oK, o |1 o oD
fv)\ — —q—’dv - fvx,-, — —Ldv=—— [3]1 A,jHiH,dV] =

Y91 ag 3 94 Od 34
where
1 .o
D= x; H H d (15)
Eq. (14) then takes the form
aD dE
aqk aqk k Qk
where
H
Lk-f)\,jV,(f—a—’dv an
v dqx
and
OH,
=)oy —L dS
Qk J“ N . aq
6

PR o v =
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The quantity O, can be regarded as the thermal force applied on the boundary S of the
medium of volume v. The quantity L, represents the convection term and for the case of a
solid medium (¥, = 0) it is equal zero and Eq. (16) reduces to a form similar to Lagrange’s
equation in mechanics. Eq. (16) as it was derived is quite general in the sense that it can be

applied to different types of media with different material properties.

Consider now a special case where the displacement field can be approximated by a linear

combination of the generalized coordinates as follows

H (x,.1) = ¢ (1) fi, (x) k=1,n j=12.3 (18)
In Eq. (18) the coefficients g, (1) represent a degree of freedom and the functionf,(x,)
specifies the extent to which g, (r) participates in the function H,(x,t). In finite element
analysis, for example, Eq. (18) may be considered as the distribution function of the displace-
ment field, where g, can then be taken as nodal displacement or nodal deformations depending

on the type of element selected.

Differentiating Eq. (18) with respect to time and space we obtain

H = gt (19)
aH,
= ‘5;," = Qi Suii-

The scalar E, the vector L, and the invariant D from Egs. (8), (15), and (17) are expressed in

terms of Egs. (19) as follows
E= -;— €nnm3n
D =+ dyind
2 mnHm4n

Ly = &mm (20)
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where

emn = S Siifuy v
don = [ NSty v

tim = J A,V S Srmnd? Q@
Substituting the specific forms of E, D, and L, from Egs. (20) into Eq. (16) one obtains

d,q, + (g; + ¢,)q, = Q (22)
with

0= f ons,as (23)
Equations (22) constitute a system of n ordinary differential equations for the unknown field
parameters g, (k=1,n), and i1 may represent the heat displacement field H,. This system of n
equations can be solved together with the appropriate boundary condition by any numerical
technique. Thus this variational formulation is not restricted to applications of the finite ele-

ment method but is appropriate for applying other numerical schemes as well.

Another advantage of the derived equations is that they are not restricted o solving
convection-diffusion problems. By appropriate choice of the variables g, to represent other
physical quantities, the derived equations can be used to solve problems involving such quanti-

ties as concentration or velocity fields.
3. FINITE ELEMENT ANALYSIS

In order to demonstrate the application of the finite element method to the previously
derived variational formulation, two element models are chosen to approximate the heat dis-
placement. The first model is a linear element with minimum degrees of freedom (LE) and
the second is a higher order element with four degrees of freedom (CE), known as first order
cubic Hermitian. Although both elements are one dimensional approximations, they provide a

good test case for the performance of any variational formulations. An extension into the two
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dimensional space is easily obtained since the derived equations are of general form. If the
heat displacement is approximated by a third order polynomial

Hxt) = a, + a\,x + a,x? + a;x°, (24)
then the temperature 8 is given by

8(x,t) = a, + 2a,x + 3a;x? (25)

where g, are time dependent coefficients to be determined for each of the element models.

a. Linear element (LE)

For the linear element of length / the conditions at the nodal points are:

atx=0— H=H,

and

atx=/—H=H,

where H, and H, are the nodal values of the heat displacement and the coefficients a, are given

by
a,= H\(D), a,= -ll-(Hz — H)), ay= a3 = 0. (26)

Substituting these coefficients in Egs. (24) and (25) yields

Hxt) = [1 - i’l H () + 3[511,(:) Qn

and

8(x1) = l, (Hy(1) ~ H, (D).

Note that within each element # varies only with time for the (LE) approximations.

The matrix coefficients of Eq. (22) are evaluated in terms of Egs. (27) as follows

_4 1 -1
€mn = 711 1
Al

2 1
dmn - '@ [1 2 (28)

4av (-1 1
gmn-_z_k' -1 1

e ————— s - Tt e . of
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and

0l _,=0=~46. 0 =0,- 40
x=0 x={
where A4 is the cross sectional area of the element, & is the diffusivity and ¥ is the fluid velo-

city.

In terms of Egs. (28), Eq. (22) yields

/ 21'1'11 ly[~| 1] i —l] m) o,
6k12‘H2+2k‘11+l“‘11H2 0, 29)
b. Cubic element (CE)
For the cubic Hermitian element the coefficients a,

are evaluated from the nodal values of

H(x.1) and their spatial derivatives at the nodes, which are the nodal values of the temperature
8(x,1).

The conditions at the nodes are

atx==0—~H=H|,0-=0|;
and

arx = [ — H = H, 0=29,,
where (H\,H,) and (6,,6,) are the nodal values of the heat displacement and temperature
respectively. Thus, the coefficients of Eq. (24) can be found as

a4~ H, ay=9,

a) = — "’l7 [(92 + 201)1 - 3(”2 - H])]

ay = Il,[(a, +8)1 = 2(H, ~ H,)) (30)
and the expressions for H(x,r) and 0(x,1) are given by
Hxt) = flq, + f129; + S8 + S1494

&}))
0(x.1) = hy1q, + hyyq; + hi3q3 + hyq,.

10
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The shape function f}, and h; (i = 1,2, 3) are given by

3x2 A3 3x2 2

Su=1=g+ T Su= g~

2 3 2 3
fu"x-z—);—‘*"’;—,.fu-"xT"'% (32

and

b= S = 2 1),

and the generalized coordinates ¢; are

g1=H), g2=86), g3~ H,, q4=0,.

The corresponding ¢;, d;;, and g; are given by

3% 30-36 3
4| 3 ar =3 -p

€= 307 |-36 =31 36 —3i 33)
3 -1 =31 4P

156 221 54 —13/
Ak | 220 4R 131 =3P
=20 s4 131 156 —221 (34)

~131 =32 =221 4P

dy

-210 42/ 210 -42/
AV |42 0 42 -1 %)

& = 3710 |-210 —421 210 42
421 12 -421 0

and the components of the generalized force are

Q1 =~A40,, Q3= A46,, 0, = Qy=0. (36)
In terms of Egs. (27)-(30), Eq. (22) yields

ill Hl

. -0,
{71+ el + lenfghi~1 3
P 9] |o
11

e e oo oot e A B i
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or
[d) 14} + fig) + leNlg) = 10}

For the solution of a particular problem, the finite element models derived above are
assembled according 1o the direct stiffness method 1o obtain the global equations. The formula-
tion of the overall problem is not compiete uniess boundary conditions are taken into con-
sideration. The system of n equations together with the appropriate boundary conditions can be
solved by any numerical technique used for solving ordinary differential equations. In the fol-

lowing section, the above system of equations is solved for two types of boundary conditions by

using a backward differences in time integration technique.

4. BOUNDARY VALUE PROBLEM
The one dimensional case of the convention-diffusion equation is considered here to
evaluate the two finite element models introduced previously with the following initial and

boundary conditions.

a. Convection dominated flow

The equation to be solved is

—+ V- —=—=0 (38)
where V is the flow velocity of constant value.

The initial conditions are

0(x,00=0 0L x<L 39)
and the boundary conditions are

T~T,
Lo =——=2 >0 (40)
T,
T|"’To
_—2 <
.00 ={ T, 0<r<s
0 , <t
12




NRL MEMORANDUM REPORT 422¢

b. Combined convection snd diffusion

The equation to be solved is

w0, 8, 09,

+ 41
o ax ax?
where & is the diffusion coefficient.
The initial conditions are
8(x,0) =0, 0<x<L (42)
and the boundary conditions are
rl - To
a.0(0,)) = —r—— >0
a ! T !
8(L.1) =0, t >0 43)
I-T
- 9 <
b 9(0.1) = 7;‘ , 0<I\IO
0, 1< 1
8(Lt) =0, t>90

At this stage it is expedient 10 relate the dimensionless variables to the physical variables

as follows:
- X - k
- - — 44)
X= ! L’l' (44
= T-T, 5 T, 1
b=v-—7 M7=t "
- k
V,,--;V. t,,-—L—l-r,,

Here L is the characteristic length, T, is a constant temperature applied at the boundary and 7,,

the length of time during which T, is applied at the boundary.

The equations for the two finite element models are now written in terms of the above
defined dimensionless quantities as follows,

13
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1. Linear element:

(d.) (H} + llg] + leJ] {H] = {Q)

with

21 -11
[d.] = [l 2]' lgl=3V.W, [_] |]

-1

1
[Pf] - 6W02K0 ["l ‘

-6
and {Q) = 6W,K, { 0 ] (45)

I11. Cubic element:

4

H
+ llg+ le,] {',,,,'] - (o)

with

165 54 YW, —\3W,
54156 1YW, -2 W,
i=oyw, 13w, ywi -yw;
13/ W, 2/ W, -YW; W§

=210 210 4YW, —42 W,
210 210 -4 W, 4YW,
led=2VoWo |4y W, &YW, 0 -UYW;§ “o
QW, —aYW, UWg 0
36 =3 YW, Iw,

~8;
-36 36 -~3W, -yYw,
le,] = |4W&K,,

0,
YW, -3W, YW} YW {Q) = 420 WK,

YWy =YW, ~1/WE 4W} 0

where W, = L/I, and V¥, and K, are the dimensionless constant velocity and diffusivity respec-

tively. The bar over the variables has been eliminated for simplicity. The boundary conditions

are transformed due to the dimensionless quantities as follows

14
|
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a. Convection —dominated fiow

1.6(0,1) = 1.0, t>0

10, 0<r1<gy,

80D =1o 5, (47)

b. Convection-diffusion

1.6(0,1) = 1.0, t>0
a(L,1) = Q, t20 (48)

10, 0<r<y

Le0.N=To0 > to.

8(L,1) = 0.0, 120

The assembly of the above equations for the overall problem and their modification due
to the boundary conditions is coded in a compuier program given in Appendix C. After solving
for the displacements of the (LE) model, the temperture for the i " element can be obtained

through the relation

0, = Wa (,’i+i—’li) i=1l,n (49)
For the (CE) model, the solution of the system of equations will directly give nodal displace-

ments as well as nodal temperatures.
5. NUMERICAL SOLUTION

The one-dimensional convection-diffusion problem has been formulated by the finite ele-
ment method and its solution can be obtained from the system of ordinary differential equa-
tions in matrix form presented in the previous section. For the boundary value problem, with
given boundary conditions, numerical solutions are obtained by applying suitable numerical

integration techniques.

15
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In this secuion. the numerical errors induced by the tme integration scheme and by the
finite element method are evaludted av are the convergences of the solution. Furthermore,
resulty are given for the different types ot boundary conditions considered in the previous sec-

ton.
a. Time integration technique

The systems of ordinary differential equations obtained for the two element models are
solved by using a third-order, backward finite difference approximation. The general formula

for the first derivative can be written in the following form.

dy(r)

- l , n-1
el S ay )+ 0 (50)

=0
where 4 is the size of the time discretization and a, are constant coefficients. [If only third order

and lower Lerms are retained (n = 4), then the coefficients are given by

11.0 18.0 9.0 2.0
a, = 6O,a|- 6.0.03-“63. 03-‘-6'0. 04‘0.0 (sh

for the third-order approximation.

In order to evaluate the stability and convergence of the above numerical scheme, results
were obtained for a number of different time-step sizes. A stability analysis given in Appendix
A shows that the scheme is unconditionally stable. This stability is not related to error esti-

mates or rate of convergence,

Consider the case of pure diffusion (K, = 1, ¥, = 0} as a test case for illustrating some
numerical results. A characteristic length L = S js chosen to represent the semi-infinite space.
which is divided into 10 elements (TNE = 10). Results with respect to time are given for the
point x = 1.0 and for the following boundary conditions

00t)=10, ¢ 20
(Lt)=00, 120

16
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This choice of boundary conditions is appropriate for evaluating numerical solution errors and
convergence. Numerical results for different time step sizes are presented in Figs. 1.2 and

Table 1 for the two element models. The optimum time step was found to be within the range

of 0.01 to 0.2. For smaller or larger time steps the error of the numerical solution increases.
Referring to Fig. 1, it is apparent that as the time step becomes smaller, the solution does not
converge monotonically. Comparing the results for the two models, the (CE) as expected, is
much more accurate than the (LE). An optimum time step size, approximately in the range of

0.01 to 0.025, yields the most accurate results.

The non-monotonic convergence is due to the fact that the numerical solution depends
not only on the time step size but also on the spatial discretization as well. This is demon-
strated in the following, where numerical experiments provide a criterion for uniform conver-

gence.

b. Convergence of the Finite Element Solution [

In order to investigate the convergence of the two finite element models, the previously
discussed problem is considered and with the same constants. The total number of elements by
which the characteristic length L is represented is designated as TNE and the numbers of ele-
ments from x = 0 to x = 1.0 is denoted by NE. The results of this part are given for two
cases, one where the time step size Ar is kept constant for different TNE, and the other case ‘

where the ratio Ar/Ax? is kept constant, where Ax is the dimensionless length of an element.
Convergence For Constant A

Results for this case are given for the time step size At = 0.025 for both element models.

For the (LE) model TNE is 5, 10, 20, 30 with the NE being 1,2,4 and 6 respectively. For the

17 |
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Time

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

22

24

G
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Table 1. Numerical results for the temperature at x =
the (CE) model with constant TNE = 10.

Ar=1005 Ar=0025 | Exact

Ar=0.2 Ar= 01
0.050761 0.061340
0.167021 0.226432
0.305074 0.345081
0.405435 0.414393
0.464985 0.468150
0.503298 0.509717
0.535127 0.542831
0.563341 0.570084
0.587542 0.592999
0.608034 0.612611
0.625647 0.629639
0.641050 0.644596

0 082475

02459.0

0.350841

0.421731

0.473867

0.514170

0.546491

0.573147

0.595609

0.614868

0.631614

0.646344

1.0 for

0.099961
0254928
0355827
0.425394
0.476695
0.516448
0.548389
0.57478

0.597047
0.616085
0.632687

0.647267

0.113846

0.263552

0.361310

0.429195

0.479500

0.518605

0.550090

0.576149

0.598161

0.617074

0.633553

0.648076

(CE) model TNE is 5, 10, 20, 25 with NE being 1,2.4,5 respectively. In Fig. 3 results for the

(LE) model are presented for the temperature at x = 1.0 with respect to time for the four

different values of TNE. As one may see from this figure, the results of the finite element

solution do not converge monotonically to the exact solution as TNE increases.

For the CE, the results are given in Table 2 for the time history of the temperature of x =

1.0 and for different values of TNE (i.e. §,10,20,25). By increasing the TNE the results show

improvement. However, increasing the number of elements does not necessarily imply uni-

form convergence.

To obtain a better view of the convergence of a typical data point, Fig. 4 shows the errors

for the temperature with respect to TNE for constant At and with respect to At for constant

20
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Table 2. Numerical results for the temperature at x = 1.0 for
the (CE) model with constant Ar = 0.025.

Time | TNE =5 | TNE =10 | TNE = 20 | TNE = 25 | Exact
0.2 0.072260 0.099961 0.102454 0.102548 0.113846
0.4 0.242260 0.254928 0.256015 0.256053 0.263552
0.6 0.350094 0.355827 0.356245 0.356256 0.361310
0.8 0.422881 0.425394 0.425537 0.425540 0.429195
1.0 0.475747 0.476695 0.476705 0.476708 0.479500
1.2 0.516323 0.516448 0.516484 0.516389 0.518605
1.4 0.548726 0.548389 0.548282 0.548282 0.55090
1.6 0.57535S 0.574780 0.574628 0.574627 0.576149
1.8 0.597759 0.597047 0.596864 0.596864 0.598161
2.0 0.616944 0.616085 0.615944 0.615948 0.617074
2.2 0.633653 0.632697 0.632549 0.632551 0.633553
24 0.648339 0.647267 0.647159 0.647161 0.648076

TNE, for botk element models. The errors are evaluated at point x = 1.0 and time ¢ = 1.0.

Figure 4 clearly shows that convergence cannot be achieved by increasing the number of ele-

ments alone or by decreasing the step size alone.

Convergence For Constant Ar/Ax?

In the previous analyses of the time integration technique and the finite element method,

the results demonstrated that an increase of the time step size or the number of elements alone

does not guarantee uniform convergence. This phenomenon is similar to the numerical insta-

bility of the direct finite difference analysis (e.g. [10]1).

A modulus M is proposed here, defined as

At
Ax?’

22
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